Functional differentiation of Brassica napus guard cells and mesophyll cells revealed by comparative proteomics.

نویسندگان

  • Mengmeng Zhu
  • Shaojun Dai
  • Scott McClung
  • Xiufeng Yan
  • Sixue Chen
چکیده

Guard cells are highly specialized cells that form tiny pores called stomata on the leaf surface. The opening and closing of stomata control leaf gas exchange and water transpiration as well as allow plants to quickly respond and adjust to new environmental conditions. Mesophyll cells are specialized for photosynthesis. Despite the phenotypic and obvious functional differences between the two types of cells, the full protein components and their functions have not been explored but are addressed here through a global comparative proteomics analysis of purified guard cells and mesophyll cells. With the use of isobaric tags for relative and absolute quantification (iTRAQ) tagging and two-dimensional liquid chromatography mass spectrometry, we identified 1458 non-redundant proteins in both guard cells and mesophyll cells of Brassica napus leaves. Based on stringent statistical criteria, a total of 427 proteins were quantified, and 74 proteins were found to be enriched in guard cells. Proteins involved in energy (respiration), transport, transcription (nucleosome), cell structure, and signaling are preferentially expressed in guard cells. We observed several well characterized guard cell proteins. By contrast, proteins involved in photosynthesis, starch synthesis, disease/defense/stress, and other metabolisms are preferentially represented in mesophyll cells. Of the identified proteins, 110 have corresponding microarray data obtained from Arabidopsis guard cells and mesophyll cells. About 72% of these proteins follow the same trend of expression at the transcript and protein levels. For the rest of proteins, the correlation between proteomics data and the microarray data is poor. This highlights the importance of quantitative profiling at the protein level. Collectively this work represents the most extensive proteomic description of B. napus guard cells and has improved our knowledge of the functional specification of guard cells and mesophyll cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolomics and Proteomics of Brassica napus Guard Cells in Response to Low CO2

Stomatal guard cell response to various stimuli is an important process that balances plant carbon dioxide (CO2) uptake and water transpiration. Elevated CO2 induces stomatal closure, while low CO2 promotes stomatal opening. The signaling process of elevated CO2 induced stomatal closure has been extensively studied in recent years. However, the mechanism of low CO2 induced stomatal opening is n...

متن کامل

Marking cell layers with spectinomycin provides a new tool for monitoring cell fate during leaf development.

Spectinomycin, an inhibitor of plastid protein synthesis, can be used to mark specific cell layers in the shoot meristem of Brassica napus. Pale yellow-green (YG) plants resulting from spectinomycin-treatment can be propagated indefinitely in vitro. Microscopic examination showed that YG-plants result from inactivation of plastids in the L2 and L3 layers and are composed of a pale green epiderm...

متن کامل

Modified sucrose, starch, and ATP levels in two alloplasmic male-sterile lines of B. napus.

Alloplasmic lines of Brassica napus with rearranged Arabidopsis thaliana mitochondrial DNA are male sterile and vegetatively altered compared with B. napus cv. Hanna. The CMS lines contain pure nuclear and plastid genomes from B. napus. Cross-sections of leaves revealed elevated starch accumulation and a higher number of chloroplasts per cell area in CMS plants compared with B. napus. The incre...

متن کامل

Metabolomic Responses of Guard Cells and Mesophyll Cells to Bicarbonate

Anthropogenic CO2 presently at 400 ppm is expected to reach 550 ppm in 2050, an increment expected to affect plant growth and productivity. Paired stomatal guard cells (GCs) are the gate-way for water, CO2, and pathogen, while mesophyll cells (MCs) represent the bulk cell-type of green leaves mainly for photosynthesis. We used the two different cell types, i.e., GCs and MCs from canola (Brassic...

متن کامل

Transcript profiling provides evidence of functional divergence and expression networks among ribosomal protein gene paralogs in Brassica napus.

The plant ribosome is composed of 80 distinct ribosomal (r)-proteins. In Arabidopsis thaliana, each r-protein is encoded by two or more highly similar paralogous genes, although only one copy of each r-protein is incorporated into the ribosome. Brassica napus is especially suited to the comparative study of r-protein gene paralogs due to its documented history of genome duplication as well as t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular & cellular proteomics : MCP

دوره 8 4  شماره 

صفحات  -

تاریخ انتشار 2009